Focus Area : Energy/Power Management Systems

Grid integration, micro grids, power on demand, high efficiency conversion, high
density power electronics, power converter for harsh environments, sensor networks
for power systems, control and optimization of power circuits/electronics fault
management and security in power systems.
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Smart Grid: Stochastic Optimization for Smart Grid

Big Data analytics, non-parametric model, quantile regression, ADMM optimization
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Dimitry Gorinevsky and Stephen Boyd
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Smart Grid: Data-driven Risk Analytics for Energy and Climate

Long tail models. Optimal Bayesian estimation. Trend of Peak Power Load Events
Value at Risk. Big Data analytics. Year-to-year trend
of 100 year event risk. Peak power load for utility.

Extreme weather events in changing climate.
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Smart Grid: VISDOM: Data Analytics Platform for Smart Grid

Analytics &
Traditionally Optimization
: : Bef
8 > Questionnaire Aﬂ:f > R;E‘-Pjrl'se
odels
| K
Segmentation

Smart meter w-“) Targeting

& Extract
% a"'| R e[| Bdediin
Web platform and open source software for
= Consumer response modeling and prediction
" Load scheduling and forecasting
* Rate and real-time pricing design

* Targeting storage, solar, DR and other technologies

= Fault isolation and service restoration
Contact: Chin Woo Tan (tancw@stanford.edu) Pl: Ram Rajagopal
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Smart Grid: Line Sensor for Distribution Networks
Very low cost, high accuracy power sensing for

distribution systems:
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= Self-powered, voltage and current sensor using a novel
active measurement technique.

= Applications: outage and topology detection, voltage
control, PMU.
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Smart Grid: Energy-efficient robotic transportation networks

1 2

Objective: to generate models and
methods for the system-level control of A1 = Arrival rate of
robotic transportation networks wherein requests at queue 1
shared, self-driving, and electric vehicles
provide mobility and connect to the smart
grid for recharging (Figure 1).

Current work: Recharging
* Queueing-theoretical models of robotic Figure 1

transportation networks (RTN).
* Dynamic routing algorithms for RTN.
* Optimization of battery recharging.
* Demo involving autonomous NAVIA

shuttles (Figure 2). Collaboration with
SLAC and US Army ARIBO program.

Figure 2

Contact: Marco Pavone Stanford | ENGINEERING




Smart Grid: Work based on power Data

*Demand Response (DR)

Policy

Energy
provider

Energy consumers reduce
electricity use at time of market
high price.

-DR policy requires a prediction of consumer energy consumption patterns.
—There exists a wide variety of load shapes; Data can contain a million of load

shapes.

* Approach: Cluster load shapes into K classes, using Dynamic Time Warping (DTW).

* Model of Consumer: Daily activities generates power consumption patterns. Timing

varies within bound.

—Example : S1 and S2 are Ben'’s load shapes. He showers an hour late on day2 so the
corresponding power usage shifts to the right. We want to group S1 and S2 together.
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Previous work: Clustering load shapes

based on L2 dissimilarity penalizes

mismatch across the horizon.
Sanjay Lall, Nicky Teeraratkul
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Our approach: Clustering load shapes
based DTW dissimilarity produces optimal
alignment between two series, allowing

them to match.
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 Implementation : Calculate DTW distance between load shape vectors
using dynamic program with a set of allowed search path, then use DTW
distance matrix in divisive hierarchical clustering.

* Result: Compared to using L2, clustering using DTW,
— We get half a number of clusters.
— Each cluster is more compact.

— Household is represented by a fewer clusters -> Easier to continue
the prediction problem for DR.
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Data Centers: Distributed Control of Microgrids
Designing algorithms and hardware for plug and

play control of microgrids:
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= Stable control of networks of inverters and DC/DC
converters.

" Constant power load modeling.
= Distributed asynchronous AC and DC OPF solving.

= Low-cost embedded controller supporting storage,
solar, fuel cells for power optimization and local
voltage control in Data Centers, Buildings, Campus.

Contact: Chin Woo Tan (tancw@stanford.edu) Pl: Ram Rajagopal, Stephen Boyd
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Power Electronics: Aircore magnetics

Air-core components not subject to saturation or Curie temperature
limitations

Toroidal are an improvements over solenoids as the magnetic field is
constrained to the torus

- Lower stray fields — Lower EMI issues

PCB toroids have better copper coverage and lower loss and very
repeatable

Better air-core passives are possible with new fabrication techniques

Prof. Juan Rivas, Wei Liang, Luke Raymond
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Power Electronics: 3D Printed Passive Components

(a) 3D CAD model (b) 3D printed plastic mold (c) cast silver model

Fig.: Steps in the fabrication of a 3D inductor. (a) shows the OpenJSCAD model, (b) shows a translucent plastic model and (c)
shows a sterling silver inductor. The 3D inductor has 10nH inductance and its dimensions are OD=18mm, ID=6mm, N=4. Also
notice the rounded cross section.

» 3D Printing can overcome limitations of PCBs and wire-
wound indutors

» Overhangs, curved surfaces possible

 Design flexibility to optimize cross section
* Higher quality factor
 FEM tools allow 3D printing all passives in power

converters
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Power Electronics: 3D Printed Passive Components

o
(a) CAD (b) Cast (c) FEM
Fig.: toroid inductor with a round cross section. OD=29mm, ID=11mm, N=20.
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Prof. Juan Rivas, Wei Liang, Brian Holman
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Power Electronics: Performance evaluation of diodes under
high voltage and high slew ra

« SiC diodes at 10's of MHz and
high dv/dt present losses that can
limit applcation at high volgates

Thermocouple

RF

cFLIR ThernalAH

Sl - Understanding and accurate
modeling may lead to higher power
density supplies for x-rays, satellites

Prof. Juan Rivas, Luke Raymond, Wei
Liang

Estimated Diode loss at various output voltages, Igy=50mA (600V SiC Diodes) Estimated Diode loss at various output voltages, I;;=100mA (600V SiC Diodes)
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